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Abstract 

Generalizations of the Weierstrass formulae to surface immersed into •4 .~-' and into multi- 
dimensional Riemann spaces are proposed, lntegrable deformations of surfaces in these spaces via 
the modified Veselov-Novikov equation are discussed. © 1999 Elsevier Science B.V. All rights 
reserved. 

Subj. Class.: Differential geometry 
1991 MSC: 53B20:58B20 
Kevwords: Integrable deformation of surfaces: Generalized Weierstrass representation: Riemann space', 

1. Introduction 

Theory of immersion and deformations of  surfaces has been an important part of the 

classical differential geometry (see e.g. [1-3]). Various methods to describe immersions 

and different types of deformations have been considered. New results in this field have 

been discussed, for instance, in [4,51. 

Surfaces and their dynamics are key ingredients in a number of phenomena in physics 

tot) (see e.g. [6-8]). They are, for instance, surface waves, propagation of  flame fronts. 

growth of  crystals, deformation of membranes, dynamics of vortex sheets, many problems of 

hydrodynamics connected with motion of boundaries between region of  differing densities 

and viscosities. A number of  papers have been devoted to a study and application of the 

integrals over surfaces in gauge field theories, string theory, quantum gravity and statistical 

physics [6-8]). 
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Direct approaches to describe surfaces always have been of  great interest. The classical 

Weierstrass formulae for minimal surfaces immersed in the three-dimensional Euclidean 

space ~3 is the best known example of  such an approach. Only recently [9-11 ] the Weier- 

strass formulae have been generalized to the case of  generic surfaces in It~ 3. During the last 

two years the generalized Weierstrass formulae have been used intensively to study both 

global properties of surfaces in R 3 and their integrable deformations. 

In this paper we present the generalizations of the Weierstrass representation for surfaces 

immersed into the multi-dimensional Euclidean and Riemann spaces. The cases of  the 

four-dimensional Euclidean space It~ 4 and space 5 4 of constant curvature are considered 

in detail. The comparison of  our Weierstrass formulae for surfaces in R 4 and those of 

conformal immersion in ~4 is given. The properties of the Willmore functional for the 

immersion in It~ 4 and 5 4 are studied. The Weierstrass representations for immersion into 

pseudo-Euclidean spaces with signatures (+,  + ,  -t-, - )  and (+,  + ,  - ,  - )  are presented. 

Surfaces on Lie groups are discussed too. 

lntegrable deformations of  surfaces via the modified Veselov-Novikov equation are con- 
sidered. It is shown that the Willmore functional (or Helfrich-Polyakov action) is invariant 

under such deformations. 

The paper is organized as follows. In Section 2 a brief review of  the old and general- 

ized Weierstrass formulae for surfaces in ~3 is given. The Weierstrass representation for 

generic surfaces immersed into R 4 is derived in Section 3. An extension to four-dimensional 

Riemann spaces, in particular to 5 4 and the Minkowski space, is presented in Section 4. 

The Weierstrass representations for surfaces in multi-dimensional spaces are discussed in 

Section 5. Integrable deformations are considered in Section 6. 

2. The old and generalized Weierstrass formulae for surfaces in R 3 

Here for the sake of  convenience we will briefly remind the old Weierstrass representation 

for minimal surfaces in ~3 and will review recent results concerned with its generalization 
to generic surfaces in ~3. 

An original Weierstrass formulae (see e.g. [1-3]) starts with two arbitrary holomorphic 

functions ~0(z) and X (z) of the complex variables z, 2 z ~ C. Then one introduces the three 
quantities X i (z, 2) (i = 1,2, 3) as follows: 

X I = R e  

X 2 = Re 

f (~02 + x2)dz' 1 , 
F 

f (~0 2 - x2)dz '] , 
_[" 

x, f = - R e  2 ~0xdz' . 

F 

(2.1) 
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I -r -4  ~ , Finally one treats X (,., ~) (i 1 2, 3) as the coordinates of a surface in R3: this surface 

is a minimal one ( i.e. has zero mean curvature) and the parametric lines - = const and 

= const are the minimal lines. The Weierstrass formulae have been the most powerful 

tool in the study of minimal surfaces. 

An analog of the Weierstrass formulae for surfaces of  prescribed (non-zero) mean cur- 

vature have been proposed by Kenmotsu in [9]. The Kenmotsu representation is given 
by 

where 4~ = [I - f 2  i(i + f2) ,  2 f ]  and the functions f and 0 obey the following compat- 

ibility condition 

2 f  f? 
(log r/)_ -- 1 + If l  2 (2.3) 

Here and below the bar denotes the complex conjugation. Then the mean curvature H is 

H 2 f :  
- -  ( 2 . 4 )  

r/(l + I.fi2) 2" 

It was proved in [9] that any surface in R 3 can be represented in such a form. This repre- 
sentation of surfaces deals basically with the Gauss map for generic surface in R 3 (see also 

[12,13]). 

Another generalization of the Weierstrass formulae to generic surfaces in R 3 have been 

proposed independently by one of the authors in 1993 (see [ 10,11 ]). It starts with the linear 

system (two-dimensional Dirac equation) 

@: = p~o, ~ = -P~k. (2.5) 

where ¢ and ¢ are complex-valued functions of z,~ e C and p(z, 7) is a real-valued 
function. Then one defines the three real-valued functions X l (z, 7), X2(z, ~) and X3(z, =,.) 
by the formulae [ 10,1 i ] 

f - - 2  , --':' -r X l + i X 2 = i  (~/, d z - ~ 0 - d z ) ,  

1" 

f ") --/ 
X I - i X 2 = i  ( ~ 0 2 d z ' - O - d z ) ,  (2.6) 

F 

= - t (~~0 dz' + X 3 O~dZ') .  

I" 

where r is an arbitrary curve in C. In virtue of  (2.5) the rhs in (2.6) do not depend on 
the choice of  F.  If one now treats Xi(z. ~) as the coordinates in R 3 then formulae (2.5), 
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(2.6) define a conformal immersion of  surface into ~3 with the induced metric of the 

form 

ds 2 = u2 dzd~, u = Ilpl 2 + Iqgl 2, (2.7) 

with the Gauss curvature 

4 
K = ---w [log u].~Z (2.8) 

b/- 

a n d  the mean curvature 

H = 2 p .  (2.9) 
U 

At p = 0 one gets minimal surfaces and formulae (2.6) are reduced to the old Weierstrass 

formulae (2.1) under the identification ~o = ~0, X = ~ .  

It turned out that the Kenmotsu formulae (2.2), (2.3) and the generalized Weierstrass 

formulae (2.5), (2.6) are equivalent to each other. The relation between the functions ( f ,  ~1) 

and (~,  qg) is the following [14]: 

.1]t . 
f = t - - ,  0 = I~0- (2.10) 

~0 

and 

of.:. (2.11) 
P = q/ -~( l  -k - i f ]2 )  

So, all results proved for the Kenmotsu tbrmulae [9] and associated Gauss map [13] in 

R 3 are valid also for the generalized Weierstrass formulae (2.6). In particular, it implies 

immediately that any surface in R 3 can be represented via (2.5), (2.6). 

Though the representations (2.2)-(2.4) and (2.5), (2.6) are equivalent, the latter provides 

us certain advantages. They are mainly due to the fact that in the generalized Weierstrass 

formulae the functions ~p and ~o obey linear equations (2.5) while for the Kenmotsu formulae 

the nonlinear constraint (2.3) is hard to treat. This circumstance had allowed to simplify 

essentially an analysis that had lead to several interesting results both of  local and global 

character [ 14-21 ]. It occurred, in particular, that the Willmore functional (see e.g. [22]) or 

the Helfrich-Polyakov action (see [6-8]) W = f H 2 l  dS] has a very simple form: W = 

4 f p2 d x d y  (z = x + iy)[14,151. 
One of  the advantages of  the generalized Weierstrass formulae (2.5), (2.6) is that they al- 

low to construct a new class of  deformations of  surfaces via the modified Veselov-Novikov 

equation [10,1 i]. The characteristic feature of these integrable deformations is that the 
Willmore functional remains invariant [14,15]. Thus, the generalized Weierstrass repre- 
sentation (2.6) has been proved to be an effective tool to study surfaces in ff~3 and their 
integrable deformations. 

We would like to emphasize that the idea to generate surfaces via solutions of  linear 

equations is, in fact, the old idea of  the classical differential geometry (see discussion in 

[ i I ]). In [3] one can find the two representations of  these type in addition to the Weierstrass 
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formulae. The first is given by the Lelieuvre's formula which is well known in affine 

geometry (see e.g. [23]). Another example [3, p. 82] is provided by the equation 

O~, / - (log ~.),10 ~ - ,k20 = 0, (2.12) 

where ~, r/ are real variables and X is a real-valued function. It is stated in 13] tha! two 

solutions of (2.12) define, via certain integral formulae, a surface in ~3 parametrized by 
minimal lines, but no calculation of the metric and curvature is given. This example, seems, 

was forgotten completely until it had been found during the preparation of the second paper 

[11] on the generalized Weierstrass lormulae. The representation (2.12) is rather close to 
that of (2.5), (2.6). Indeed, Eq. (2.12) can be rewritten as the system 

0~ = ),co. ~0,~ = ~0, (2.13) 

where ~0 is a new function. If one takes two solutions (0, ~o) and (0, ~b) of the system (2.13~ 
then the formulae given in [3, p. 82] take the form 

X I + i X  2 = f ( o  2 dr/+~o 2 d~), 

X I _ iX 2 = f (02 d r /+  ~2 d~), (2.14~ 

= i f  (0(~ d r / +  ~p~d~). X 3 

However, in contrast to the representation (2.5), (2.6), formulae (2.13), (2.15) do not define 
a real surface in ~3. 

We would like to note that some results in 124,25] were close to the generalized Weierstrass 
representation (2.6). In [24] a formula similar to (2.5) for constant mean curvature surfaces 

has been discussed. In [25] the system (2.5) had appeared within the quaternionic description 
of surfaces in ~3 (formula (2.19) of  [25]). But in [25] it was accompanied by another two 

equations (Eq. (2.16) of  [25]) which are indispensable in the Sym's  type approach. So the 
meaning of the system (2.5), seems, had been missing. The generalized Weierstrass type 
formulae admit also a beautiful formulation within the spinor representations of surfaces 

[26,271. 

3. The Weierstrass  representat ion for i m m e r s i o n  into R 4 

An extension of the representation (2.5), (2.6) to the four-dimensional Euclidean space 

is as follows. Let ~Pl, ~l and ~2, ¢'2 be two independent solutions of the system (2.5), 
i.e. 

~ l :  = p~ol. 42: = p~02, ~Pl- = -P~L, 

Eqs. (3. I) imply that 

~02- = - P ¢ 2 .  (3.1) 

(3.2) 
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As a consequence there are four functions X i (z, ~) (i = 1, 2, 3, 4) such that 

-~- ~(¢11/t2 q- {01q92) dz + c.c., dX I 

dX 2 = / ( ¢ , ¢  2 - ~ol ~P2) dz + c.c, (3.3) 

dX 3 = --/(~-1~02 + ~-2q91 ) dz + C.C., 

dX4 = i l (~1 q02 - ~-2~01 ) dz + C.C. 

where c.c. means complex conjugated previous term. We treat now these functions X i (z, ~) 
as the coordinates of  surface in R 4. For components of  induced metric 

4 4 
= 

i=1 
one gets 

gzz = g ~  = 0 

and 

x i  x i g:: = Z (  : ~) (3.4) 
i=1 

gzz = ½( l¢ l l  2 + 1(,°112)(1¢212 + 1~°212) • 

Further, two normal vectors NI,  N2 are 

N l = , /  - - - -  , N2=,/Iqgl121tp212 1~o1121~o212Re(A) - - - -  lm(A), 
V UlU2 y UlU2 

where 

u k = ( l C k l  2+1~ok12), k =  1,2, 

[ (~1 ~-2) ¢1 +~-2 1/rl~2 i(l. .b lPI~2)] 
a = i g ,  g ' - v - 7  - g .  1 G G '  " 

The mean curvature vector H = X:Jg :_  is given by 

2p 
H = R e [ - i ( ¢ l  ~02 + ~P2~o, ), (¢ ,  ~ + ~2~ol ). 

UlU2 

(1/II 1~2 -- {O1~2), i(1//I ~2 -- {°l~2)]- 

The components hi ,  h2 of  H along Nl and N2 ( H = hjNl  + h2N2 ) are 

~01~2 -'F ~1~2 tillS2 -- ~ItP2 = h2 = ip . 
hi -Pv/ulu2goll21~o212 , v/UlU21~oll,_l~212 

So, the mean curvature H = V/)--~4=I H i H i = V~I  + h]_ is equal to 

2p n ~ - - - - -  

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

(3.11) 

(3.12) 
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Then the Gaussian curvature is 

2 
K - - -  [log (ulu2)]:- .  (3.13) 

IllU2 

Finally, the Willmore functional W = f H2[dS] is given by 

W = 4 f  p2 dxd~'. (3.14) 

Thus, we have the following theorem. 

Theorem 3.1. The generalized Weierstrass formulae 

x, i f  _ ,  = ~ 1 (Ol~2+~ol~2)dz ' - - (Ol l k2+~l~2)dz  l. 

I" 

x 2 = l f  -, [ (~1 ¢2 -- ~1~02) d : '  + ( f f l '~2 - g°l~2) dz ] '  

i (3.15) 
X3 1 f =--~,1 [(TI~P2+¢2~Pl)Oz'+(¢I~z+~'2~I)d~']' 

I" 

X4 = . . . .  2i f [(~1~o 2 ~ 0 1 )  d z ' _  (~1~2 ~2~1) d~-'], 
/" 

where 

~ :  = pcp~. ~p~. = -p~p~, o~ = 1,2. (3.16) 

p(z, ~) is a real valued function, F is a contour in C. define the conformal immersion of a 

surface into R 4. The induced metric is of the form 

ds 2 = ulu2dzdz ,  (3.17) 

where u~ = I~k~,l 2 + I~o~,12 (~ = 1,2), the Gaussian and mean curvatures are 

2 2p 
K -- - -  [log(ulu2)]:~, H - - - .  (3.18) 

UlU2 

The total squared mean curvature (Willmore functional) is given by 

w = 4 f  p2 dxdy .  (3.19) 

The generalized Weierstrass representation (3.15) defines surface in I~ z up to translations. 

In the particular case #2 = -t-~'1, ~ = +~ol, X~ = X 4 = 0 and formulae (3. i 6)-(3.19) are 

reduced to those (2.5)-(2,9) of ~3 case. 
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Corol la ry  3.1. Minimal s'urfaces in R 4 are given by the Weierstrass representation (3.15), 

(3.16) with p(z, =,.) = O. Surfaces of constant mean curvature H are given by formulae 

(3.15) where g%, q)~ (~ = 1,2) obey the system of equations 

~ :  = -~- ( l~ l l  2 + l~oll2)(l~2l 2 + 1~212)~0~,, 
(3.20) 

H /(I¢,t 12 + I~ol [2)(l~P2l 2 + 1~0212)~,. ~P~ - 2 

At ~2 = + ~ l ,  ~o2 = +~oj the system (3.20) is reduced to a simpler one [11] which has 

been studied in [16]. 
Note Eqs. (3.3) can be represented in the form 

d(X I + iX 2) = i ~ l ~ 2 d z  -- i~ l~2d~,  

d(X l - iX 2) = i~p~ ~o2 dz - i~kl ~P2 dL 
(3.21) 

d(X 4 + iX 3) = --i~2~01 dz - i~l ~2 d~, 

d(X 4 - iX 3) = i~-i ~o2 dz + i~2~l d2, 

which reveals a symmetry between the pairs of  coordinates (X I , X2), (X 3, X4). 

Formulae (3.3) can be also rewritten in a spinor representation type form 

( 0  d z ) v . .  (3.22) d ( ° l X 2 + ° 2 x l  -cr3X3 + i lX4)  = V2~ d~ 0 

where 

V, ~ = ( ~ , . 2 ,  -__~<,.2, ) (3.23) 
'- ~o~.21 ~kli.2~ ' 

~ri (i = 1,2, 3) are the Pauli matrices and I is the identity matrix. 
Condition (3.5), that an immersion is conformal, written as 

(X~)2 + (X2)2 + (X3)2 + (X4)2 = 0 (3.24) 

defines the complex quadric Q2 

u,~ + u,; + tv~ + u,~ = 0 (3.25) 

in CP 3 where u'i (i = 1,2, 3, 4) are homogeneous coordinates. A diffeomorphism of Q2 
to the Grassmannian G2.4 of oriented 2-planes in N4 allows us to define the Gauss map 
G(z) for a surface represented by the generalized Weierstrass formulae (3.15). It is given 
by 

G(z) = [ i ( ~ l ~  2 + ~ot ~o2), ~laP2 - ~ol~o2, -~l~P2 - ~2~ol. i(~1~o2 - gr2~ol)]. 

(3.26) 

The Gauss map for surfaces immersed into R4 has been studied earlier in the paper [ 13]. In 
[13] the Gauss map G(z) has been parametrized as follows: 
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G(Z) = [(1 + f l f2 ) ,  i(l - f lJ2),  (f~ - f2), - i ( f ~  + f2)]. (3.27) 

where ,/'1 and f2 are complex-valued functions. A surface in R z is then defined by [131 

X = f Re(oGdz).  (3.28) 

where .[I and f_, satisfy the compatibility conditions 

f , -  1 + If, I 2 ~ 1 -4- ]f212]_ 

and 

IF~I = 161 (3.30) 

where Fi = ./}-( 1 + If, 12) - I  , i = 1.2. The function 0 Is given by 

, 4Fi F2 
~7- = H2(I  + ifl12)(l + if212), (3.31) 

where the mean curvature H is expressed via ./'l and f2 by 

fl:~" 2 f l  f l :  J2,:~ 2 f 2  f2: 
2(log n ) -  -- f l -  1 + If11 - - - - - - - -~  + f2~ 1 + If21 e 13.321 

Similar to the three-dimensional case this representation includes the complicated compat- 

ibility conditions. 

T h e o r e m  3.2. The generalized Weierstrass representation (3.15)-(3.19) implies the Gauss 
map t3'pe representation (3.28)-(3.32) via the substitution 

m m 

~7 = i~ot~P2, fl  = i o---L, f2 = - i  ~-~ . (3.33) 
~ot ~02 

The proof is straightforward: Eqs, (3.16) and (3.33) give the constraints (3.29)-(3.31) 

with 

p = - i &  ~°-2-t = iF_, ~02 (3.34) 
¢)1 992 

while (3.15) is converted into (3.28). 

4. Surfaces in four-dimensional Riemann space 

The results of  the previous section apparently can be extended to the case of  immersion 

into generic four-dimensional Riemann space with the metric tensor gik. 
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Proposi t ion 4.1. Formulae (3.15), (3.16) define an immersion o f  surface into the four-  

dimensional  Riemann space with the metric tensor gik. The induced metric is 

ds 2 = g:: dz 2 + 2g:~ dz d2 = + g ~  d~ 2, (4.1) 

where 

- -  Xi  X k gz: = gik X!Xk- = g ~ ,  g:- : gik z =." (4.2) 

The Gaussian and mean curvature are calculated straightforwardly. 

In the case ofconformally Euclidean spaces gik = e2rrSik (i, k = 1,2, 3, 4, rr is a function 

and 8ik is the Kronecker symbol) the immersion is the conformal one: 

ds 2 = e 2'~ u I u2 dz dL (4.3) 

The Gaussian and mean curvatures are 

K = - 2 e  -2° [2rr + log (u I u2)]:=, H = 2e - °  - - P  (4.4) 
UlU2 uw/-~-~." 

For the Willmore functional one gets 

W = 4 f p2 dx dy. (4.5) 

A special case of  immersions into the space ~4 of constant curvature had attracted recently 

the particular interest (see e.g. [22,28]). To describe it we choose the Riemann form for the 
metric of  ~4, i.e. (see e.g. [291) 

e rr = 1 + T (Xi)2 ' (4.6) 

i=1 _1 

where K0 is the curvature. Then formulae (3.15), (3.16), (4.3)-(4.5) define the conformal 

immersion of  a surface into S 4. At ~2 = -t-~Pl, (P2 = +¢Pl (X 4 = 0) one has the conformal 

immersion into ~3. The generalized Weierstrass representation provides us an effective 
method to study immersions into ~3 and ~ 4  in particular the Willmore surfaces. It will be 
done in a separate paper. 

Immersions into the Riemann spaces with non-Euclidean signature are of  interest too. 
For Minkowski space M4: gik = diag(l,  1, 1 - l). Formulae (3.15), (3.16), (4.1), (4.2) 
define a surface in M 4 with the line element 

ds 2 = [2g~ + 2Re(g::)]  dx 2 - 4Im(g-:)  dx dy + [2gz: - 2Re(g-.)] dy 2, (4.7) 

where z = x + iy and 

g:- = ½(~1¢2_ - ~-2¢Pl) 2 ~--- ~z~., g-~ = /[~-I(P2 "t'- ~2¢Pl [ 2. (4.8) 

For a space with the metric gik = diag(1, 1, - 1 ,  - 1 ) ,  in addition to the immersion of  the 
type (4.7), (4.8) there is a Weierstrass type representation for conformal immersion. 
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T h e o r e m  4.1. The Weierstrass type formulae 

x,=if [(~"102 - ~ot<p2) dz '  - (~Pl ~2 - ~Pl~P2)dg']. 

r 

X2 I f  , _, 

/-, 

(4.9) 

x~= 1 f[(~o2+~,~o~)dz'+(O~2+O_~t)d~.'l 
2 

l" 

X4 i f = ~ [(~-t ~o2 - ~ 2 ~ o l ) d z ' -  ( ~ i ~ 2  - ~P2~)d? . ' l .  

I" 

where 

~P~: = ptpc~, tp,~_ = pTO~, ot = 1.2,  (4.10) 

and p is a real-valued function, define a conformal immersion o f  surface into the four- 

dimensional space with the metric gi~ = diag( 1, 1, - 1, - 1 ). The induced metric is o f  the 

form 

d s  2 = ( l ~ l l  2 -I~0~ 12)(1~212 -1~0212)dz d2 = v d z d ~  

and the Gaussian and mean curvatures are 

2 .. H2 4 p  2 
K = - -  (log v):  . . . .  

[' I '  

The total squared mean curvature is 

W = f H'-l dSl = -4 f pz dx dy. 

The proof  is s imi lar  to that of  Theorem 3.1. In this case 

and 

d ( X  I + iX 2) = i~i,,b'2 dz + i~t ~2 d~-, 

d ( X  i - iX 2) = - i ~ t  ~02 dz - i~ i  ~P2 d2, 

d (X  4 + iX 3) = -i~-2~01 dz - i~1~2 d~, 

d (X  4 - iX 3) = i~ l~02dz  + i @ 2 ~ t  d~. 

(4.11) 

14.12) 

(4.13) 

(4.14~ 

(4.151 

The Weiers t rass  representat ion (4 .9)- (4 .13)  could  be useful  also for the study of  N = 2 

superstr ing [30]. 
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5. Surfaces in multi-dimensional spaces and on Lie groups 

Any solution (~p, ~0) of the system (2.5) gives rise via (2.6) to the three coordinates X I , 

X 2, X 3. Given a pair of  solutions 0Pl, ~ol ) and (¢'2, ¢P2) one has two possibilities. The first is 

to generate tour coordinates via the formula (3.15), the second is to get six coordinates: X t 

X 2, X 3 via (2.6) with the solutions (~p~, ~0~ ) and X a, X 5, X ~ via (2.6) using the solutions 

(~P2. ~02). In the latter case, one has the conformal immersion of  a surface into ~6 with the 

induced metric 

ds 2 (lq + u~) dz d::. (5.1) 

Further, introducing four coordinates X 7, X 8, X 9, X t0 via (3.15) one can get an immersion 

into ~m. The induced metric in this case is 

ds 2 = (u~ + u lu2 + u~) dz d?.. (5.2) 

In such a manner apparently one can get an immersion of a surface into the Euclidean space 

R 'v' with N = 3n -t- 4m where n and m are arbitrary integers. The corresponding induced 
metric is of the form 

ds 2 = u~, + ut,ufl  dz d~, (5.3) 

where m is equal to the number of  pairs a,  fl (a # fl). 

The Weierstrass representations for immersion of surfaces into the complex spaces are 

defined analogously. Let (~¢, ~p,,) and (~fl, ~p#) be any two solutions of  the system (2.5), 

i.e. 

~pt,: = p~ot,. ~P#: = P~Pi~, G , -  = -P~Pt , .  ~o~5 = - P ~ P # ,  

where p is a complex valued function. The system (5.4) implies 

(5.4) 

(¢t, ~p,~ ): = - (~0t, ~0~ )-. (5.5) 

Consequently, the integral 

X× = ~_ ,  At,# (~Pt,Ol~ d=,. - qot,~ofl dz ) ,  (5.6) 
t , ' f l  /"  

w h e r e  A )' t,# are arbitrary constants does not depend on the contour of integration F.  Treating 

N functions X ; ' ( z ,  =~) ( y  = 1 . . . . .  N )  as the coordinates in C N, one gets an immersion of 
a surface into C ,v. The induced metric is given by 

3 

g : : = Y ~  A 2 fl Ot, ~P fl 

7 = 1  a, fl 
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= -  A . ~ G ~ t ~  Z ~ ~°"~°t~ " 
~, = I ¢*I~ y = I ui~ ] 

Choosing A2~ properly, one can get a conformal immersion. 

Finally, let us consider a set of  solutions O~ il, ~o~, i ~ which solve the systems 

/¢ (i I _ [ i )  ^ I l l  I i)  ~,[i)--ftl 
,,: = p Va,, . i = 1 . . . . .  N. ~P,,? = - 1  W,, • a = 1 . . . . .  M, (5.8) 

with different potentials p{i~. Since 

[llr~i~,b{ill. {il (ill_ ` 

one can define a set of functions X "~ via 

l'~' ~ [dtli!~ltO~ li3 {i) Xt*l~ : Z Bi j t~,~, ~-t~ d~ - ~0, ¢Pt~ dr.]. (5.11)~ 

i=1  l" 

where Bi are arbitrary, constants. Formula (5.10) defines, in fact, a matrix X such that 

X,~t~ = X ~'t~ (~, ~ = 1 . . . . .  M). At N > M the matrix X is a generic element of the group 

G L ( M .  C).  So formula (5.10) with N = M defines a surface on the group G L ( M .  C) in :t 

meaning given in [31 ]. Using the formulae from [31 ], one can calculate all characteristics 

of  such surfaces. 

6. lntegrable deformations 

An important advantage of the generalized Weierstrass representation is that it provides 

a way to construct integrable deformations of immersed surfaces. The idea is the following 

[10,11]: let the functions p,  ~ and q9 in (2.5) depend on the parameter t. Then one con- 

siders those deformations of ~b and ~0 that there are differential operators A. B, C, D such 

that 

~0, = A gr -+- Bqg, opt = C ~p + D~o. ~6.1) 

Given A, B, C, D the compatibil i ty condition of (6.1) with (2.5) is equivalent to the non- 

linear partial differential equation for p. Varying operators A, B, C, D. one gets an infinite 

hierarchy of integrable equations tbr p. It is the so-called modified Veselov-Novikov (mVN) 

hierarchy [ 11 ]. Choosing A, B,  C, D, as the first-order operators, one gets the linear equation 

for p. The first non-trivial nonlinear example is given by the modified Veselov-Novikov 

equation: 

Pt = P:-. "q- 3 p : w  + 2PRO: + C.C., ~ = (p2) . .  16.2} 
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The corresponding 

A = ~3 + 03 

B : -3p:O: 
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operators are 

3-- + 3~3-:- + ~w?-:, 

+ 3pw, 

(6.3) 

(6.4) 

(6.5) 

(6.6) 

C = 31)=. ~ - 3p-~, 

D=8") + B 3 + 3wB: + ~w:. 

The deformation of  ~p, ~0 via (6.1) generates the corresponding deformations of the coordi- 

nates X i (z, ~, t). In the case of  immersion into 8 3 it was shown in [ 14,15] that the Willmore 

functional W is invariant under the deformations generated by the mVN equation (6.2) as 

well as by the whole mVN hierarchy. Formulae for deformation of  coordinates, elements 

of  metrics and other geometric quantities have been obtained in [19l. 

To get integrable deformations of  surfaces immersed in ~4 we assume that both solutions 

(~1, qgl ) and (qt2,992) of  the system (3.1 6) evolve in t according to Eq. (6.1) with the same 

A, B, C, D. Correspondingly the coordinates X i (i = 1.2, 3, 4) of the surface given by 

(3.1 5) are deformed in t. These deformations of a surface are integrable one similar to the 

case 8 3 [1 1]. From (3.19) and equality f (p2), dz d-  = 0 it immediately follows: 

Theorem 6.1. The value of the Willmore functional W for surface immersed into ~4 is 

preserved by the m VN deformations (by all hierarchy). 

There is an infinite set of  functionals over p preserved by the evolution (6.2). So there 

is an infinite family of  geometric functionals over surface in 84 which are preserved by 

the mVN deformations. The Willmore functional W for surfaces in 84 is invariant under 

conformal transformations in this space (see e.g. [22]). One could conjecture that similar 

to the 83 case [18] all these higher preserved functionals are invariant under the conformal 

transformations in ~4 too. 

Formulae (6.1), (6.2) define also integrable deformations of surfaces in Riemann spaces 

considered above. In particular we have the following theorem. 

Theorem 6.2. The value of Willmore functional for surfaces immersed into conformally- 

Euclidean spaces is preserved by the mVN deformations. 

Using the results of  the papers [17,20,21], one can define the global deformations of 
surfaces immersed into I~ 4, 5 4 and other spaces. This problem will be considered elsewhere. 
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